论文标题
使用神经动力学识别的软多旋翼控制
Soft Multicopter Control using Neural Dynamics Identification
论文作者
论文摘要
对软体机器人的动态控制以提供低维驱动输入的复杂行为是具有挑战性的。在本文中,我们提出了一种计算方法,以自动生成多功能,未成年的控制策略,该策略可以驱动具有复杂结构和非线性动力学的柔软的机器。我们的目标应用集中在对软多翼型的自主控制上,其弹性材料成分,非惯性形状和不对称的转子布局,以精确提供合规的变形和敏捷的运动。我们方法的中心部分在于轻巧的神经替代模型,以识别和预测一组表征弹性软体的几何变量的时间演变。这种基于物理学的学习模型进一步集成到线性二次调节器(LQR)控制循环中,通过一种新型的在线固定点重新线性化方案增强了,以适应动态的身体平衡,从而使由常规的全尺度感应模拟模拟器工作流动造成了积极的计算降低。我们通过为广泛的自定义软性多层设计并在高保真物理模拟环境中生成控制器来证明方法的功效。该控制算法使多跨器能够执行各种任务,包括悬停,轨迹跟踪,巡航和主动变形。
Dynamic control of a soft-body robot to deliver complex behaviors with low-dimensional actuation inputs is challenging. In this paper, we present a computational approach to automatically generate versatile, underactuated control policies that drives soft-bodied machines with complicated structures and nonlinear dynamics. Our target application is focused on the autonomous control of a soft multicopter, featured by its elastic material components, non-conventional shapes, and asymmetric rotor layouts, to precisely deliver compliant deformation and agile locomotion. The central piece of our approach lies in a lightweight neural surrogate model to identify and predict the temporal evolution of a set of geometric variables characterizing an elastic soft body. This physics-based learning model is further integrated into a Linear Quadratic Regulator (LQR) control loop enhanced by a novel online fixed-point relinearization scheme to accommodate the dynamic body balance, allowing an aggressive reduction of the computational overhead caused by the conventional full-scale sensing-simulation-control workflow. We demonstrate the efficacy of our approach by generating controllers for a broad spectrum of customized soft multicopter designs and testing them in a high-fidelity physics simulation environment. The control algorithm enables the multicopters to perform a variety of tasks, including hovering, trajectory tracking, cruising and active deforming.