论文标题

按程度序列渐近枚举

Asymptotic enumeration of hypergraphs by degree sequence

论文作者

Kamčev, Nina, Liebenau, Anita, Wormald, Nick

论文摘要

我们证明了一个具有给定度序列的$ K $均匀超图的渐近公式,用于广泛的参数。特别是,我们发现一个渐近的公式等于$ n $顶点上的$ d $ g $均匀的超图,但前提是,对于常数$ c> 0 $的$ dn \ le c \ le c \ binom {n} {k} $对几乎独立二项式随机变量的简单模型的超图,从而扩展了由于第二和第三作者而导致的图形结果。

We prove an asymptotic formula for the number of $k$-uniform hypergraphs with a given degree sequence, for a wide range of parameters. In particular, we find a formula that is asymptotically equal to the number of $d$-regular $k$-uniform hypergraphs on $n$ vertices provided that $dn\le c\binom{n}{k}$ for a constant $c>0$, and $3 \leq k < n^C$ for any $C<1/9.$ Our results relate the degree sequence of a random $k$-uniform hypergraph to a simple model of nearly independent binomial random variables, thus extending the recent results for graphs due to the second and third author.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源