论文标题
层次用户意图提取提取物网络用于信用贷款过期风险检测
A Hierarchical User Intention-Habit Extract Network for Credit Loan Overdue Risk Detection
论文作者
论文摘要
移动银行应用程序正在出现更多的个人消费贷款产品。为了易于使用,申请流程总是很简单,这意味着在申请贷款时,很少有人要求用户填写申请信息,这不利于构建用户的信用资料。因此,简单的应用程序为逾期的风险检测带来了巨大挑战,因为较高的逾期利率将导致银行造成更大的经济损失。在本文中,我们提出了一个名为Huihen(层次用户意图 - 利用提取物网络)的模型,该模型利用移动银行应用程序中的用户行为信息。由于用户行为的多样性,我们根据时间间隔将行为序列分为会话,并使用现场感知方法来提取行为内部信息。然后,我们提出了一个由时间感知的GRU和用户认识的GRU组成的分层网络,以捕获用户的短期意图和用户的长期习惯,这可以被视为对用户配置文件的补充。提出的模型可以提高准确性,而无需增加原始在线申请过程的复杂性。实验结果证明了Huihen的优势,并表明Huihen在所有数据集上的表现都优于其他最先进的模型。
More personal consumer loan products are emerging in mobile banking APP. For ease of use, application process is always simple, which means that few application information is requested for user to fill when applying for a loan, which is not conducive to construct users' credit profile. Thus, the simple application process brings huge challenges to the overdue risk detection, as higher overdue rate will result in greater economic losses to the bank. In this paper, we propose a model named HUIHEN (Hierarchical User Intention-Habit Extract Network) that leverages the users' behavior information in mobile banking APP. Due to the diversity of users' behaviors, we divide behavior sequences into sessions according to the time interval, and use the field-aware method to extract the intra-field information of behaviors. Then, we propose a hierarchical network composed of time-aware GRU and user-item-aware GRU to capture users' short-term intentions and users' long-term habits, which can be regarded as a supplement to user profile. The proposed model can improve the accuracy without increasing the complexity of the original online application process. Experimental results demonstrate the superiority of HUIHEN and show that HUIHEN outperforms other state-of-art models on all datasets.