论文标题

用于异常检测的无监督转移学习:应用于互补工作条件转移

Unsupervised Transfer Learning for Anomaly Detection: Application to Complementary Operating Condition Transfer

论文作者

Michau, Gabriel, Fink, Olga

论文摘要

当测量样品偏离训练数据分布时,对健康操作条件数据进行了异常检测器的培训,并引起警报。这意味着用于训练模型的样品应足够数量并代表健康的工作条件。但是,对于经过不断变化的运营条件的工业系统,获取如此全面的样本需要长时间的收集期,并延迟可以训练并进行运营的异常检测器的点。 解决此问题的一种解决方案是执行无监督的转移学习(UTL),以在不同单位之间传输互补数据。但是,在文献中,UTL旨在在数据集之间找到共同的结构,以进行聚类或降低维度。但是,尚未研究转移和结合补充培训数据的任务。 我们提出的框架旨在以一种完全无监督的方式在不同单位之间传递互补的工作条件,以训练更健壮的异常探测器。它与其他无监督的转移学习作品不同,因为它专注于单级分类问题。提出的方法使得只有其他单位经历的操作条件中检测异常。拟议的端到端框架使用对抗性深度学习来确保对齐不同单元的分布。该框架引入了一个新的损失,灵感来自降低维度工具的启发,以强制保护每个数据集的固有可变性,并使用最先进的曾经阶级的方法来检测异常。我们使用三个开源数据集证明了提出的框架的好处。

Anomaly Detectors are trained on healthy operating condition data and raise an alarm when the measured samples deviate from the training data distribution. This means that the samples used to train the model should be sufficient in quantity and representative of the healthy operating conditions. But for industrial systems subject to changing operating conditions, acquiring such comprehensive sets of samples requires a long collection period and delay the point at which the anomaly detector can be trained and put in operation. A solution to this problem is to perform unsupervised transfer learning (UTL), to transfer complementary data between different units. In the literature however, UTL aims at finding common structure between the datasets, to perform clustering or dimensionality reduction. Yet, the task of transferring and combining complementary training data has not been studied. Our proposed framework is designed to transfer complementary operating conditions between different units in a completely unsupervised way to train more robust anomaly detectors. It differs, thereby, from other unsupervised transfer learning works as it focuses on a one-class classification problem. The proposed methodology enables to detect anomalies in operating conditions only experienced by other units. The proposed end-to-end framework uses adversarial deep learning to ensure alignment of the different units' distributions. The framework introduces a new loss, inspired by a dimensionality reduction tool, to enforce the conservation of the inherent variability of each dataset, and uses state-of-the art once-class approach to detect anomalies. We demonstrate the benefit of the proposed framework using three open source datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源