论文标题

在Edge计算中卸载优化,用于深度学习启用目标跟踪。

Offloading Optimization in Edge Computing for Deep Learning Enabled Target Tracking by Internet-of-UAVs

论文作者

Yang, Bo, Cao, Xuelin, Yuen, Chau, Qian, Lijun

论文摘要

授权无人驾驶汽车(UAV)已广泛用于提供智能(例如目标跟踪)。在我们的现场实验中,在UAV中部署了预训练的卷积神经网络(CNN),以从捕获的视频框架中识别目标(车辆),并使无人机可以继续跟踪。但是,由于所需的高推理准确性和严格的延迟要求,这种视觉目标跟踪需要大量计算资源。这促使我们考虑由于无人机的计算资源和能源预算有限,并进一步提高了推理准确性,因此将这种类型的深度学习(DL)任务卸载到移动边缘计算服务器(MEC)服务器。具体而言,我们提出了一个新型的层次DL任务分发框架,其中无人机与预训练的CNN模型的较低层嵌入,而具有丰富计算资源的MEC服务器将处理CNN模型的较高层。提出了优化问题,以最大程度地减少加权和成本,包括通过无人机的通信和计算引入的跟踪延迟和能源消耗,同时考虑到DL模型和推理错误的数据质量(例如,视频帧)输入。获得分析结果,并提供见解,以了解拟议框架中加权和推理错误率之间的权衡。数值结果证明了提议的卸载框架的有效性。

The empowering unmanned aerial vehicles (UAVs) have been extensively used in providing intelligence such as target tracking. In our field experiments, a pre-trained convolutional neural network (CNN) is deployed at the UAV to identify a target (a vehicle) from the captured video frames and enable the UAV to keep tracking. However, this kind of visual target tracking demands a lot of computational resources due to the desired high inference accuracy and stringent delay requirement. This motivates us to consider offloading this type of deep learning (DL) tasks to a mobile edge computing (MEC) server due to limited computational resource and energy budget of the UAV, and further improve the inference accuracy. Specifically, we propose a novel hierarchical DL tasks distribution framework, where the UAV is embedded with lower layers of the pre-trained CNN model, while the MEC server with rich computing resources will handle the higher layers of the CNN model. An optimization problem is formulated to minimize the weighted-sum cost including the tracking delay and energy consumption introduced by communication and computing of the UAVs, while taking into account the quality of data (e.g., video frames) input to the DL model and the inference errors. Analytical results are obtained and insights are provided to understand the tradeoff between the weighted-sum cost and inference error rate in the proposed framework. Numerical results demonstrate the effectiveness of the proposed offloading framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源