论文标题

圆环上的曲线最多相交

Curves on the torus intersecting at most k times

论文作者

Aougab, Tarik, Gaster, Jonah

论文摘要

我们表明,圆环上的任何一组独特的同质曲线类别的简单封闭曲线,最多与$ k $ times相交的尺寸$ k + o(\ sqrt {k} \ log k)$。在这项工作之前,Agol的引理,以及用于主要间隙大小的最新情况,暗示了错误术语$ o(k^{21/40})$,实际上,Riemann假设的假设将此错误术语提高到了我们获得的$ O(\ sqrt {k} {k} {k} \ log log log log k)$。相比之下,我们的方法是基本,组合和几何。

We show that any set of distinct homotopy classes of simple closed curves on the torus that pairwise intersect at most $k$ times has size $k + O(\sqrt{k} \log k)$. Prior to this work, a lemma of Agol, together with the state of the art bounds for the size of prime gaps, implied the error term $O(k^{21/40})$, and in fact the assumption of the Riemann hypothesis improved this error term to the one we obtain $O(\sqrt{k} \log k)$. By contrast, our methods are elementary, combinatorial, and geometric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源