论文标题
通过凸优化的结构保护函数近似
Structure-preserving function approximation via convex optimization
论文作者
论文摘要
使用有限数据的函数的近似通常不尊重函数的某些“结构”特性。例如,如果给定函数是非负的,则该函数的多项式近似不一定也不是不负的。我们提出了一种形式主义和算法,用于保留某些类型的这种结构在功能近似中。特别是,我们考虑对应于大约凸的凸约约束的结构(对于阳性为一个例子)。然后,近似问题将其转换为凸的可行性问题,但是可行的集合相对复杂,因此不能直接应用标准凸的可行性算法。我们建议并讨论解决此问题的不同算法。我们机械的功能之一是灵活性:相对复杂的约束,例如同时执行阳性,单调性和凸度,非常简单地实现。我们证明了算法在单变量函数近似中的几个问题上的成功。
Approximations of functions with finite data often do not respect certain "structural" properties of the functions. For example, if a given function is non-negative, a polynomial approximation of the function is not necessarily also non-negative. We propose a formalism and algorithms for preserving certain types of such structure in function approximation. In particular, we consider structure corresponding to a convex constraint on the approximant (for which positivity is one example). The approximation problem then converts into a convex feasibility problem, but the feasible set is relatively complicated so that standard convex feasibility algorithms cannot be directly applied. We propose and discuss different algorithms for solving this problem. One of the features of our machinery is flexibility: relatively complicated constraints, such as simultaneously enforcing positivity, monotonicity, and convexity, are fairly straightforward to implement. We demonstrate the success of our algorithm on several problems in univariate function approximation.