论文标题

模块化子集总和,动态字符串和零和零和集合

Modular Subset Sum, Dynamic Strings, and Zero-Sum Sets

论文作者

Cardinal, Jean, Iacono, John

论文摘要

模块化子集总和问题包括决定,给定模量$ m $,一个$ n $ n $ $ n $整数的$ 0..m-1 $,以及目标整数$ t $,是否存在$ s $的子集,是否存在元素的子集,是否存在元素到$ t \ mod m $,并且报告了这样的设置。对于模块化子集总和问题,我们给出了一个简单的$ O(M \ log M)$ - 具有高概率(W.H.P.)算法的时间。这是基于以前的$ O(M \ log^7 m)$ W.H.P.的基础并改进的。来自Axiotis,Backurs,Jin,Tzamos和Wu的算法(Soda 19)。我们的方法利用了Gawrychowski等人的动态字符串结构的ADT。 (苏打〜18)。但是,由于这种结构相当复杂,因此我们提出了一种更简单的替代方案,我们称之为数据依赖性树。作为应用程序,我们考虑了零和拉姆西理论中基本定理的计算版本。 ERDőS-GINZBURG-ZIV定理指出,$ 2N-1 $整数的多键始终包含恰好$ N $的基数子集,其值总计为$ n $的倍数。我们提供了一种算法,用于在时间$ o(n \ log n)$ W.H.P.中找到这样的子集。由于Del Lungo,Marini和Mori(Disc。Math。09),它在$ O(N^2)$算法上有所改善。

The modular subset sum problem consists of deciding, given a modulus $m$, a multiset $S$ of $n$ integers in $0..m-1$, and a target integer $t$, whether there exists a subset of $S$ with elements summing to $t \mod m $, and to report such a set if it exists. We give a simple $O(m \log m)$-time with high probability (w.h.p.) algorithm for the modular subset sum problem. This builds on and improves on a previous $O(m \log^7 m)$ w.h.p. algorithm from Axiotis, Backurs, Jin, Tzamos, and Wu (SODA 19). Our method utilizes the ADT of the dynamic strings structure of Gawrychowski et al. (SODA~18). However, as this structure is rather complicated we present a much simpler alternative which we call the Data Dependent Tree. As an application, we consider the computational version of a fundamental theorem in zero-sum Ramsey theory. The Erdős-Ginzburg-Ziv Theorem states that a multiset of $2n - 1$ integers always contains a subset of cardinality exactly $n$ whose values sum to a multiple of $n$. We give an algorithm for finding such a subset in time $O(n \log n)$ w.h.p. which improves on an $O(n^2)$ algorithm due to Del Lungo, Marini, and Mori (Disc. Math. 09).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源