论文标题

浅积积分对流大型模拟的伽利略不变性

Galilean invariance of shallow cumulus convection large-eddy simulations

论文作者

Lamaakel, Oumaima, Matheou, Georgios

论文摘要

在大型模拟(LES)中,计算域翻译速度可用于通过允许更长的时步间隔来提高性能。连续方程是伽利亚不变的,但是,基于标准的有限差异化离散并非离散不变,而误差与局部翻译速度和截断误差的乘积成正比。即使预期这种数值误差很小,也表明,在浮力对流的LE中,湍流的大规模流动组织可以调节和放大误差。在分辨出良好的直接数值模拟(DNS)中观察到了全球流量统计的伽利亚不变性。在反转下的单相对流的LE中,流量统计几乎是伽利利亚不变的,不取决于有限差近似的准确性顺序。相比之下,在多云对流的LE中,流统计表明,对参考框架和近似顺序有很强的依赖性。相对于参考框架的误差变得可忽略不计,因为在当前LE中的准确性顺序从第二增加到第六。具有低分辨力的方案会在表面固定的框架中产生较大的分散误差,该框架可以通过大规模流动性进行扩增,例如在Cumulus-Cloud层中非扰动的自由对流层中升高的强上升气流。有趣的是,在当前的大涡模拟中,适当的伽利略框架中的二阶离散化可以在表面固定框架中产生可比的精度作为高阶方案。

In large-eddy simulations (LES) a computational-domain translation velocity can be used to improve performance by allowing longer time-step intervals. The continuous equations are Galilean invariant, however, standard finite-difference-based discretizations are not discretely invariant with the error being proportional to the product of the local translation velocity and the truncation error. Even though such numerical errors are expected to be small, it is shown that in LES of buoyant convection the turbulent large-scale flow organization can modulate and amplify the error. Galilean invariance of global flow statistics is observed in well-resolved direct numerical simulations (DNS). In LES of single-phase convection under an inversion, flow statistics are nearly Galilean invariant and do not depend on the order of accuracy of the finite difference approximation. In contrast, in LES of cloudy convection, flow statistics show strong dependence on the frame of reference and the order of approximation. The error with respect to the frame of reference becomes negligible as the order of accuracy is increased from second to sixth in the present LES. Schemes with low resolving power can produce large dispersion errors in the surface-fixed frame that can be amplified by large-scale flow anisotropies, such as strong updrafts rising in a non-turbulent free troposphere in cumulus-cloud layers. Interestingly, in the present large-eddy simulations, a second-order discretization in the proper Galilean frame can yield comparable accuracy as a high-order scheme in the surface-fixed frame.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源