论文标题

明星:稀疏训练有素的人体回归剂

STAR: Sparse Trained Articulated Human Body Regressor

论文作者

Osman, Ahmed A. A., Bolkart, Timo, Black, Michael J.

论文摘要

SMPL身体模型被广泛用于3D人姿势和形状的估计,合成和分析。虽然很受欢迎,但我们表明SMPL有多个局限性并引入星星,这在定量和质量上优于SMPL。首先,SMPL由于使用全局混合形状而产生了大量参数。这些密集的姿势校正偏移将网格上的每个顶点与运动树中的所有关节联系起来,从而捕获了伪造的远程相关性。为了解决这个问题,我们定义了每关节姿势纠正措施,并了解每个关节运动影响的网格顶点的子集。这种稀疏的配方会导致更现实的变形,并将模型参数的数量显着减少到SMPL的20%。当对与SMPL相同的数据进行培训时,尽管参数较少,但Star会更好地推广。其次,SMPL因子构成体形的构成依赖性变形,而实际上,形状不同的人变形不同。因此,我们学习了依赖形状的姿势校正的混合形状,这些混合形状均取决于身体姿势和BMI。第三,我们表明SMPL的形状空间不足以捕获人口的变化。我们通过训练明星进行了另外10,000张男性和女性受试者的扫描,并表明这会导致更好的模型泛化。 Star是紧凑的,可以更好地概括为新的身体,并且是SMPL的替换。 Star可公开用于研究目的,网址为http://star.is.tue.mpg.de。

The SMPL body model is widely used for the estimation, synthesis, and analysis of 3D human pose and shape. While popular, we show that SMPL has several limitations and introduce STAR, which is quantitatively and qualitatively superior to SMPL. First, SMPL has a huge number of parameters resulting from its use of global blend shapes. These dense pose-corrective offsets relate every vertex on the mesh to all the joints in the kinematic tree, capturing spurious long-range correlations. To address this, we define per-joint pose correctives and learn the subset of mesh vertices that are influenced by each joint movement. This sparse formulation results in more realistic deformations and significantly reduces the number of model parameters to 20% of SMPL. When trained on the same data as SMPL, STAR generalizes better despite having many fewer parameters. Second, SMPL factors pose-dependent deformations from body shape while, in reality, people with different shapes deform differently. Consequently, we learn shape-dependent pose-corrective blend shapes that depend on both body pose and BMI. Third, we show that the shape space of SMPL is not rich enough to capture the variation in the human population. We address this by training STAR with an additional 10,000 scans of male and female subjects, and show that this results in better model generalization. STAR is compact, generalizes better to new bodies and is a drop-in replacement for SMPL. STAR is publicly available for research purposes at http://star.is.tue.mpg.de.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源