论文标题

关于定性的推断:从几何到拓扑的旅程

On Qualitative Shape Inferences: a journey from geometry to topology

论文作者

Zucker, Steven W

论文摘要

形状推断是经典的,因为它涉及从(2D)图像域到(3D)世界的地图。标准方法通过假设在照明和渲染或限制域的先验,并开发微分方程或优化解决方案来规范此问题。虽然优雅,但在这些情况下出现的解决方案非常脆弱。我们利用了人们定性推断形状的观察。个人之间存在定量差异。结果是一种基于临界轮廓和摩尔斯 - 男性复合物的拓扑方法。本文提供了对该理论的发展回顾,强调了研究的不同阶段的动机。

Shape inference is classically ill-posed, because it involves a map from the (2D) image domain to the (3D) world. Standard approaches regularize this problem by either assuming a prior on lighting and rendering or restricting the domain, and develop differential equations or optimization solutions. While elegant, the solutions that emerge in these situations are remarkably fragile. We exploit the observation that people infer shape qualitatively; that there are quantitative differences between individuals. The consequence is a topological approach based on critical contours and the Morse-Smale complex. This paper provides a developmental review of that theory, emphasizing the motivation at different stages of the research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源