论文标题
使用分层跨验证对域移位的故障检测概括性检测
Generalizing Fault Detection Against Domain Shifts Using Stratification-Aware Cross-Validation
论文作者
论文摘要
与严重的症状相比,初期异常的症状与正常工作条件非常相似,因此更难检测和诊断。训练数据中缺乏初期异常示例可能会对基于机器学习(ML)技术构建的异常检测方法构成严重风险,因为这些异常很容易被误认为是正常的工作条件。为了应对这一挑战,我们建议利用集合学习可用的不确定性信息来识别潜在的错误分类的初始异常。我们在本文中表明,整体学习方法可以通过在两个现实世界数据集上进行广泛的实验来提高初期异常的性能,并在这些模型中识别出常见的陷阱。然后,我们讨论如何设计更有效的集合模型来检测初期异常。
Incipient anomalies present milder symptoms compared to severe ones, and are more difficult to detect and diagnose due to their close resemblance to normal operating conditions. The lack of incipient anomaly examples in the training data can pose severe risks to anomaly detection methods that are built upon Machine Learning (ML) techniques, because these anomalies can be easily mistaken as normal operating conditions. To address this challenge, we propose to utilize the uncertainty information available from ensemble learning to identify potential misclassified incipient anomalies. We show in this paper that ensemble learning methods can give improved performance on incipient anomalies and identify common pitfalls in these models through extensive experiments on two real-world datasets. Then, we discuss how to design more effective ensemble models for detecting incipient anomalies.