论文标题

发现光引起的亚赛稳态异常,由单周期Terahertz脉冲控制

Discovery of Light-induced Metastable Martensitic Anomaly Controlled by Single-Cycle Terahertz Pulses

论文作者

Yang, X., Song, B., Vaswani, C., Luo, L., Sundahl, C., Mootz, M., Kang, J-H., Yao, Y., Ho, K-M, Perakis, I. E., Eom, C. B., Wang, J.

论文摘要

我们报告了超长光诱导的相变,其长期寿命长的马氏体异常,该异常是由阈值以上的单周期Terahertz(THz)脉冲驱动的NB $ _3 $ sn。低频电导率的非热,THZ诱导的耗竭表明,高能$γ_{12} $频段的差距增加增加,从而增强了马氏体阶段。相反,光学泵送导致$γ_{12} $差距熔化。这种光引起的非平衡性马氏体不稳定性持续到临界温度$ \ sim $ \ sim $ 100 k,即是平衡温度的两倍以上,并且可以稳定在技术上相关的纳米秒时尺度之外。与第一原则模拟一起,我们通过E $ _U $ phonons确定了结构波动的引人注目的THZ调整,以在高温下实现非均衡顺序,远远超过了平衡状态的非平衡订单。

We report on an ultrafast photoinduced phase transition with a strikingly long-lived Martensitic anomaly driven by above-threshold single-cycle terahertz (THz) pulses in Nb$_3$Sn. A non-thermal, THz-induced depletion of low frequency conductivity indicates increased gap splitting of high energy $Γ_{12}$ bands by removal of their degeneracies which enhances the Martensitic phase. In contrast, optical pumping leads to a $Γ_{12}$ gap melting. Such light-induced non-equilibrium Martensitic instability persists up to a critical temperature $\sim$100 K, i.e., more than twice the equilibrium temperature, and can be stabilized beyond technologically-relevant, nanosecond timescales. Together with first-principle simulations, we identify a compelling THz tuning of structural fluctuations via E$_u$ phonons to achieve a non-equilibrium ordering at high temperatures far exceeding those for equilibrium states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源