论文标题

宏观,分层的洋葱壳,如使用超舒加斯,巨型磁性脉冲在YIG膜中产生的磁性域结构

Macroscopic, layered onion shell like magnetic domain structure generated in YIG film using ultrashort, megagauss magnetic pulses

论文作者

Nath, Kamalika, Mahato, P. C., Shaikh, Moniruzzaman, Jana, Kamalesh, Lad, Amit D, Sarkar, Deep, Sensarma, Rajdeep, Kumar, G. Ravindra, Banerjee, S. S.

论文摘要

研究大规模的形成和演变,有序结构是科学中持久的主题。考虑到任何磁系统中存在的竞争相互作用的复杂性质,大尺寸磁性域的产生,演变和控制是有趣且具有挑战性的任务。在这里,我们演示了大规模的自旋序列,这是由源自高强度的飞秒激光器的巨型磁性磁脉冲驱动的。我们对专门设计的Yttrium铁石榴石(YIG)/介电/金属膜三明治目标的研究表明,复杂,大,同心,椭圆形的磁性域的创建类似于洋葱的分层壳结构。最大的壳具有数百多个微米的主要轴,与传统的次级微米尺度的多边形,条纹或气泡形状的磁性结构域形成鲜明对比,或者在磁性材料中发现的大型哑铃形状结构域,在用加速器基于基于加速器的相对论电子束辐照的磁性膜中产生的大型哑铃形状域。通过微磁模拟,我们表明巨大的磁场脉冲会产生超快的Terahertz(THZ)自旋波。这些快速传播旋转波的快照被存储在YIG膜中的分层洋葱壳形状域。通常,在少量设备中通过自旋波传输的信息传输发生在Gigahertz(GHz)方案中,该机构在室温下容易受到热干扰的影响。我们强烈的激光脉冲 - YIG三明治目标组合,为室温台式THZ旋转波动设备铺平了道路,该旋转波动器件在热噪声底部的上方或范围内运行。这种无耗散的设备可在几百微米的距离内超快控制自旋信息。

Study of the formation and evolution of large scale, ordered structures is an enduring theme in science. The generation, evolution and control of large sized magnetic domains are intriguing and challenging tasks, given the complex nature of competing interactions present in any magnetic system. Here, we demonstrate large scale non-coplanar ordering of spins, driven by picosecond, megagauss magnetic pulses derived from a high intensity, femtosecond laser. Our studies on a specially designed Yttrium Iron Garnet (YIG)/dielectric/metal film sandwich target, show the creation of complex, large, concentric, elliptical shaped magnetic domains which resemble the layered shell structure of an onion. The largest shell has a major axis of over hundreds of micrometers, in stark contrast to conventional sub micrometer scale polygonal, striped or bubble shaped magnetic domains found in magnetic materials, or the large dumbbell shaped domains produced in magnetic films irradiated with accelerator based relativistic electron beams. Through micromagnetic simulations, we show that the giant magnetic field pulses create ultrafast terahertz (THz) spin waves. A snapshot of these fast propagating spin waves is stored as the layered onion shell shaped domains in the YIG film. Typically, information transport via spin waves in magnonic devices occurs in the gigahertz (GHz) regime, where the devices are susceptible to thermal disturbances at room temperature. Our intense laser light pulse - YIG sandwich target combination, paves the way for room temperature table-top THz spin wave devices, which operate just above or in the range of the thermal noise floor. This dissipation-less device offers ultrafast control of spin information over distances of few hundreds of microns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源