论文标题

延迟敏感的服务系统中基于学习的基于学习的录取控制

Reinforcement Learning-based Admission Control in Delay-sensitive Service Systems

论文作者

Raeis, Majid, Tizghadam, Ali, Leon-Garcia, Alberto

论文摘要

确保服务系统中保证服务质量(QoS)是一项具有挑战性的任务,尤其是当系统由更精细的服务(例如服务功能链)组成时。服务系统中一个重要的QoS指标是端到端延迟,在延迟敏感的应用程序中,这变得更加重要,在延迟敏感的应用程序中,必须在时间截止日期内完成工作。入学控制是提供端到端延迟保证的一种方法,在该控制器有很高的可能性符合截止日期的可能性时,控制器才能接受工作。在本文中,我们提出了一个基于增强的学习录取控制器,该控制器保证了服务系统的端到端延迟概率上限,同时最小化了不必要的拒绝的可能性。我们的控制器仅使用网络的队列长度信息,不需要有关网络拓扑或系统参数的知识。由于长期性能指标在服务系统中非常重要,因此我们采用一种平均奖励的增强学习方法,这非常适合无限的地平线问题。我们的评估证明,所提出的基于RL的接收控制器能够在不使用系统模型信息的情况下在网络的端到端延迟上提供概率界限。

Ensuring quality of service (QoS) guarantees in service systems is a challenging task, particularly when the system is composed of more fine-grained services, such as service function chains. An important QoS metric in service systems is the end-to-end delay, which becomes even more important in delay-sensitive applications, where the jobs must be completed within a time deadline. Admission control is one way of providing end-to-end delay guarantee, where the controller accepts a job only if it has a high probability of meeting the deadline. In this paper, we propose a reinforcement learning-based admission controller that guarantees a probabilistic upper-bound on the end-to-end delay of the service system, while minimizes the probability of unnecessary rejections. Our controller only uses the queue length information of the network and requires no knowledge about the network topology or system parameters. Since long-term performance metrics are of great importance in service systems, we take an average-reward reinforcement learning approach, which is well suited to infinite horizon problems. Our evaluations verify that the proposed RL-based admission controller is capable of providing probabilistic bounds on the end-to-end delay of the network, without using system model information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源