论文标题
在域移动下保留重新校准的隐私
Privacy Preserving Recalibration under Domain Shift
论文作者
论文摘要
部署在高风险现实世界中的分类器必须输出校准的置信分数,即它们的预测概率应反映经验频率。重新校准算法可以大大提高模型的概率估计值;但是,现有算法不适用于测试数据遵循与培训数据不同的分布,隐私保护至关重要的现实情况(例如保护患者记录)。我们介绍了一个框架,该框架在差异隐私约束下抽象了重新校准问题的属性。该框架使我们能够调整现有的重新校准算法以满足差异隐私,同时对域移动情况保持有效。在我们的框架的指导下,我们还设计了一种新颖的重新校准算法,即准确的温度缩放,在私人数据集上的先前工作优于先前的工作。在一项广泛的实证研究中,我们发现我们的算法在差异隐私的限制下改善了域转移基准的校准。在ImageNet-C数据集的15个最高严重程度扰动上,我们的方法的中位数ECE为0.029,比下一个最佳重新校准方法高2倍,而几乎比没有重新校准的好几乎要好5倍。
Classifiers deployed in high-stakes real-world applications must output calibrated confidence scores, i.e. their predicted probabilities should reflect empirical frequencies. Recalibration algorithms can greatly improve a model's probability estimates; however, existing algorithms are not applicable in real-world situations where the test data follows a different distribution from the training data, and privacy preservation is paramount (e.g. protecting patient records). We introduce a framework that abstracts out the properties of recalibration problems under differential privacy constraints. This framework allows us to adapt existing recalibration algorithms to satisfy differential privacy while remaining effective for domain-shift situations. Guided by our framework, we also design a novel recalibration algorithm, accuracy temperature scaling, that outperforms prior work on private datasets. In an extensive empirical study, we find that our algorithm improves calibration on domain-shift benchmarks under the constraints of differential privacy. On the 15 highest severity perturbations of the ImageNet-C dataset, our method achieves a median ECE of 0.029, over 2x better than the next best recalibration method and almost 5x better than without recalibration.