论文标题

明智地花钱:基于实时用户意图检测的在线电子优惠券分配

Spending Money Wisely: Online Electronic Coupon Allocation based on Real-Time User Intent Detection

论文作者

Li, Liangwei, Sun, Liucheng, Weng, Chenwei, Huo, Chengfu, Ren, Weijun

论文摘要

在线电子优惠券(E-COUPON)正在成为电子商务平台吸引用户下订单的主要工具。电子结合量相当于传统纸张优惠券,可为客户提供折扣或礼物。基本问题之一是如何以最低的成本交付电子竞争,而用户愿意下订单的意愿则最大化。我们将此问题称为优惠券分配问题。这是一个非平凡的问题,因为成熟的电子平台上的普通用户数量通常达到数亿美元,而要分配的电子竞争类型通常是多重的。政策空间非常大,在线分配必须满足预算限制。此外,在不同的政策下,永远无法观察到一个用户的响应,从而增加了政策制定过程的不确定性。以前的工作未能应对这些挑战。在本文中,我们将优惠券分配任务分解为两个子任务:用户意图检测任务和分配任务。因此,我们提出了一个两个阶段的解决方案:在第一阶段(检测阶段),我们提出了一个新颖的瞬时意图检测网络(IIDN),该网络将用户核心功能作为输入并预测用户实时意图;在第二阶段(分配阶段),我们将分配问题建模为多项选择背包问题(MCKP),并使用检测阶段预测的意图提供了计算有效分配方法。我们进行了广泛的在线和离线实验,结果表明了我们提出的框架的优越性,该框架为平台带来了巨大的利润并继续在线运作。

Online electronic coupon (e-coupon) is becoming a primary tool for e-commerce platforms to attract users to place orders. E-coupons are the digital equivalent of traditional paper coupons which provide customers with discounts or gifts. One of the fundamental problems related is how to deliver e-coupons with minimal cost while users' willingness to place an order is maximized. We call this problem the coupon allocation problem. This is a non-trivial problem since the number of regular users on a mature e-platform often reaches hundreds of millions and the types of e-coupons to be allocated are often multiple. The policy space is extremely large and the online allocation has to satisfy a budget constraint. Besides, one can never observe the responses of one user under different policies which increases the uncertainty of the policy making process. Previous work fails to deal with these challenges. In this paper, we decompose the coupon allocation task into two subtasks: the user intent detection task and the allocation task. Accordingly, we propose a two-stage solution: at the first stage (detection stage), we put forward a novel Instantaneous Intent Detection Network (IIDN) which takes the user-coupon features as input and predicts user real-time intents; at the second stage (allocation stage), we model the allocation problem as a Multiple-Choice Knapsack Problem (MCKP) and provide a computational efficient allocation method using the intents predicted at the detection stage. We conduct extensive online and offline experiments and the results show the superiority of our proposed framework, which has brought great profits to the platform and continues to function online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源