论文标题
分解:从复杂的自然说明中的任务规划与机器人相交
DeComplex: Task planning from complex natural instructions by a collocating robot
论文作者
论文摘要
随着我们日常环境中的机器人数量(例如家庭,办公室,餐馆,工厂地板等)正在迅速增加,随着自然人类机器人互动机制的发展变得更加至关重要,因为它决定了机器人的可用性和可接受性。这种同居者机器人的重要特征之一是它执行以自然语言指导的任务。但是,执行人类预期的任务并不是一件容易的事,因为自然语言表达式可以具有较大的语言变化。现有作品假设一次将单个任务指令提供给机器人,或者指令中有多个独立任务。但是,文献中没有有效处理由多个相互依赖的任务组成的复杂任务指令。任务之间可以存在订购依赖关系,即必须按一定顺序执行任务,或者可以存在执行依赖关系,即输入参数或任务执行取决于另一个任务的结果。如果允许使用不受限制的自然语言,那么在复杂的教学中了解这些依赖性并不是很微不足道的。在这项工作中,我们提出了一种方法,以找到自然语言指导中给出的多个相互依赖任务的预期执行顺序。根据我们的实验,我们表明我们的系统非常准确地从复杂的指令中生成可行的执行计划。
As the number of robots in our daily surroundings like home, office, restaurants, factory floors, etc. are increasing rapidly, the development of natural human-robot interaction mechanism becomes more vital as it dictates the usability and acceptability of the robots. One of the valued features of such a cohabitant robot is that it performs tasks that are instructed in natural language. However, it is not trivial to execute the human intended tasks as natural language expressions can have large linguistic variations. Existing works assume either single task instruction is given to the robot at a time or there are multiple independent tasks in an instruction. However, complex task instructions composed of multiple inter-dependent tasks are not handled efficiently in the literature. There can be ordering dependency among the tasks, i.e., the tasks have to be executed in a certain order or there can be execution dependency, i.e., input parameter or execution of a task depends on the outcome of another task. Understanding such dependencies in a complex instruction is not trivial if an unconstrained natural language is allowed. In this work, we propose a method to find the intended order of execution of multiple inter-dependent tasks given in natural language instruction. Based on our experiment, we show that our system is very accurate in generating a viable execution plan from a complex instruction.