论文标题

$ s^2 \ times s^2 $上的许多非同位素真实形式

Infinitely many non-isotopic real symplectic forms on $S^2 \times S^2$

论文作者

Smirnov, Gleb

论文摘要

令$(s^2,ω)$为符号球体,让$τ\ colon s^2 \ to s^2 $为$(s^2,ω)$的反隔离率。我们考虑赋予抗惊性的$(s^2,ω)\ times(s^2,ω)$ $(S^2,ω)$,并赋予了反透明度的$τ\ timesτ$,并研究了这四个manifold的单调抗不变符号形式的空间。我们证明了这个空间是断开连接的。此外,在证明过程中,我们产生了格拉斯曼尼亚(2,4)的差异性,该差异诱导了所有同源性和同型组的身份图,但对身份不同义。

Let $(S^2,ω)$ be a symplectic sphere, and let $τ\colon S^2 \to S^2$ be an anti-symplectic involution of $(S^2,ω)$. We consider the product $(S^2,ω) \times (S^2,ω)$ endowed with the anti-symplectic involution $τ\times τ$, and study the space of monotone anti-invariant symplectic forms on this four-manifold. We show that this space is disconnected. In addition, during the course of the proof, we produce a diffeomorphism of the grassmannian (2,4) which induces the identity map on all homology and homotopy groups, but which is not homotopic to the identity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源