论文标题
通过某些类别的Meromoromormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormorthic功能,加权共享和唯一性
Weighted sharing and uniqueness of L-Function with certain class of meromorphic function
论文作者
论文摘要
本文的目的是研究Selberg类中$ L $功能的唯一性问题,该问题与具有有限的电线杆的任意Meromoromormormormorormormorormormorormormorormormorormormorormormorormormorormormorormormorormorormormormorormorormormorormorormormorormorormorormormormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormorormormorormoromoromoromoromorormor-功能。我们操纵了套件的加权共享概念,以改善yuan-li-yi的结果[$ l $ functions的价值分布和立陶宛数学的F. Gross的唯一性问题。 J.,$ \ mathbf {58(2)} $(2018),249-262]。更重要的是,我们指出了Sahoo-Halder的所有结果[$ L $函数的结果和某些Gross,Lithuanian Math的唯一性问题。 J.,$ \ mathbf {60(1)} $(2020),80-91],实际上使同一论文的有效性在质疑中。为了纠正Sahoo-Halder的结果,我们以紧凑和方便的方式提出了准确的形式和结果证明。
The purpose of the paper is to study the uniqueness problem of a $L$ function in the Selberg class sharing one or two sets with an arbitrary meromorphic function having finite poles. We manipulate the notion of weighted sharing of sets to improve one result of Yuan-Li-Yi [Value distribution of $L$-functions and uniqueness questions of F. Gross, Lithuanian Math. J., $\mathbf{58(2)}$(2018), 249-262]. More importantly, we have pointed out a number of gaps in all the results of Sahoo-Halder [Results on $L$ functions and certain uniqueness question of Gross, Lithuanian Math. J., $\mathbf{60(1)}$(2020), 80-91] which actually makes the validity of the same paper under question. As an attempt to rectify the results of Sahoo-Halder we have presented the accurate forms and proof of the results in a compact and convenient manner.