论文标题

部分域适应的判别跨域特征学习

Discriminative Cross-Domain Feature Learning for Partial Domain Adaptation

论文作者

Jing, Taotao, Shao, Ming, Ding, Zhengming

论文摘要

部分领域的适应性旨在使知识从较大,更多样化的源域调整到较小的目标领域,而较少的类别的类别吸引了吸引人的关注。域适应性的最新实践通过合并目标域的伪标签来更好地抗击跨域分布差异,从而设法提取有效的功能。但是,仅将目标数据与一小部分源数据对齐至关重要。在本文中,我们开发了一种新颖的判别跨域特征学习(DCDF)框架,以使用加权方案中的跨域图迭代优化目标标签。具体而言,提出了加权的跨域中心损失和加权的跨域图传播,以将无标记的目标数据与相关的源样本进行歧视性跨域特征学习,以同时忽略无关的源中心,以同时减轻边际和条件差异。对几个流行基准测试的实验评估表明,我们提出的方法通过将其与最先进的部分域适应方法进行比较来促进对未标记目标域的识别的有效性。

Partial domain adaptation aims to adapt knowledge from a larger and more diverse source domain to a smaller target domain with less number of classes, which has attracted appealing attention. Recent practice on domain adaptation manages to extract effective features by incorporating the pseudo labels for the target domain to better fight off the cross-domain distribution divergences. However, it is essential to align target data with only a small set of source data. In this paper, we develop a novel Discriminative Cross-Domain Feature Learning (DCDF) framework to iteratively optimize target labels with a cross-domain graph in a weighted scheme. Specifically, a weighted cross-domain center loss and weighted cross-domain graph propagation are proposed to couple unlabeled target data to related source samples for discriminative cross-domain feature learning, where irrelevant source centers will be ignored, to alleviate the marginal and conditional disparities simultaneously. Experimental evaluations on several popular benchmarks demonstrate the effectiveness of our proposed approach on facilitating the recognition for the unlabeled target domain, through comparing it to the state-of-the-art partial domain adaptation approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源