论文标题

风场卷积神经网络模型的比较研究

A comparative study of convolutional neural network models for wind field downscaling

论文作者

Höhlein, Kevin, Kern, Michael, Hewson, Timothy, Westermann, Rüdiger

论文摘要

我们分析了卷积神经网络(CNN)架构的适用性,以降低扩展空间域上近地表风的短程度预测。 ECMWF ERA的短距离风场预测(在100 m级别)在31 km水平分辨率下重新分析初始条件被缩小到模拟HRES(确定性)分辨率为9 km的短期预测。我们评估了四个模型架构的缩小质量,并将它们与多线性回归模型进行比较。我们对模型预测进行了定性和定量的比较,并检查CNN的预测技能是否可以通过合并其他大气变量(例如地球高度和预测表面粗糙度)或静态高分辨率领域(例如土地面膜和地形)来增强CNN的预测能力。我们进一步提出了DeepRu,这是一种新型的基于U-NET的CNN体​​系结构,它能够推断出其他模型无法重建情况的依赖情况的风结构。从高山区域的低分辨率输入场中推断出一个9 km分辨率的风场在我们的GPU目标体系结构上需要少于10毫秒,这与在低分辨率预测模拟之间的模拟时间或小时内的模拟时间或小时的间接费用相比。

We analyze the applicability of convolutional neural network (CNN) architectures for downscaling of short-range forecasts of near-surface winds on extended spatial domains. Short-range wind field forecasts (at the 100 m level) from ECMWF ERA5 reanalysis initial conditions at 31 km horizontal resolution are downscaled to mimic HRES (deterministic) short-range forecasts at 9 km resolution. We evaluate the downscaling quality of four exemplary model architectures and compare these against a multi-linear regression model. We conduct a qualitative and quantitative comparison of model predictions and examine whether the predictive skill of CNNs can be enhanced by incorporating additional atmospheric variables, such as geopotential height and forecast surface roughness, or static high-resolution fields, like land-sea mask and topography. We further propose DeepRU, a novel U-Net-based CNN architecture, which is able to infer situation-dependent wind structures that cannot be reconstructed by other models. Inferring a target 9 km resolution wind field from the low-resolution input fields over the Alpine area takes less than 10 milliseconds on our GPU target architecture, which compares favorably to an overhead in simulation time of minutes or hours between low- and high-resolution forecast simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源