论文标题
虚假数据注入攻击下的多模型弹性观察者
Multi-Model Resilient Observer under False Data Injection Attacks
论文作者
论文摘要
在本文中,我们介绍了使用辅助信息来源提高基于优化的观察者(CPS)的弹性的概念。由于物理,通信和计算的紧密耦合,恶意代理可以利用多个固有的漏洞,以便将隐身信号注入测量过程中。问题设置考虑了攻击者在战略上破坏数据部分的情况,以强迫可能带来灾难性后果的错误状态估计。拟议观察者的目标是在对抗性腐败的情况下计算真实状态。在公式中,我们使用辅助模型生成的测量先验分布来完善传统的基于压缩传感的回归问题的可行区域。使用L1最小化方案开发了基于优化的观察者。数值实验表明,所得问题的解决方案恢复了系统的真实状态。通过IEEE 14-BUS系统的数值模拟示例评估了开发的算法。
In this paper, we present the concept of boosting the resiliency of optimization-based observers for cyber-physical systems (CPS) using auxiliary sources of information. Due to the tight coupling of physics, communication and computation, a malicious agent can exploit multiple inherent vulnerabilities in order to inject stealthy signals into the measurement process. The problem setting considers the scenario in which an attacker strategically corrupts portions of the data in order to force wrong state estimates which could have catastrophic consequences. The goal of the proposed observer is to compute the true states in-spite of the adversarial corruption. In the formulation, we use a measurement prior distribution generated by the auxiliary model to refine the feasible region of a traditional compressive sensing-based regression problem. A constrained optimization-based observer is developed using l1-minimization scheme. Numerical experiments show that the solution of the resulting problem recovers the true states of the system. The developed algorithm is evaluated through a numerical simulation example of the IEEE 14-bus system.