论文标题
schrödinger操作员时期光谱测量的分形维度的下限
Lower bounds for fractal dimensions of spectral measures of the period doubling Schrödinger operator
论文作者
论文摘要
结果表明,在一维时期的频谱度量尺寸的hausdorff尺寸上退出了一个下限$α> 0 $,schrödingeroberator的光谱度量测量值,通常在此类序列的船体中,$α$也是频谱测量的上部包装尺寸的下限。
It is shown that there exits a lower bound $α>0$ to the Hausdorff dimension of the spectral measures of the one-dimensional period doubling substitution Schrödinger operator, and, generically in the hull of such sequence, $α$ is also a lower bound to the upper packing dimension of spectral measures.