论文标题
杨 - 戴上的地图,darboux转换和重构问题的线性近似
Yang--Baxter maps, Darboux transformations, and linear approximations of refactorisation problems
论文作者
论文摘要
Yang-Baxter地图(YB地图)是量子杨方程的理论解决方案。 For a set $X=Ω\times V$, where $V$ is a vector space and $Ω$ is regarded as a space of parameters, a linear parametric YB map is a YB map $Y\colon X\times X\to X\times X$ such that $Y$ is linear with respect to $V$ and one has $πY=π$ for the projection $π\colon X\times x \toΩ\timesΩ$。这些条件相当于$ y $的组件的某些非线性代数关系。相对于$ω$的参数,这种地图$ y $可能是非线性的。 我们在此类地图上介绍了一般结果,包括阐明定义它们的代数关系结构,以及几种使人从已知地图中获得新的此类地图的转换。同样,描述了用于构建此类地图的方法。特别是从[Konstantinou-Rizos S和Mikhailov A v 2013 J. Phys。答:数学。理论。 46 425201],我们演示了如何使用与darboux矩阵相对的矩阵重构问题的线性近似来获取某些LAX运算符的非线性DARBOUX转换的线性参数YB图。提出了具有非线性依赖性参数的新线性参数YB图。
Yang--Baxter maps (YB maps) are set-theoretical solutions to the quantum Yang--Baxter equation. For a set $X=Ω\times V$, where $V$ is a vector space and $Ω$ is regarded as a space of parameters, a linear parametric YB map is a YB map $Y\colon X\times X\to X\times X$ such that $Y$ is linear with respect to $V$ and one has $πY=π$ for the projection $π\colon X\times X\toΩ\timesΩ$. These conditions are equivalent to certain nonlinear algebraic relations for the components of $Y$. Such a map $Y$ may be nonlinear with respect to parameters from $Ω$. We present general results on such maps, including clarification of the structure of the algebraic relations that define them and several transformations which allow one to obtain new such maps from known ones. Also, methods for constructing such maps are described. In particular, developing an idea from [Konstantinou-Rizos S and Mikhailov A V 2013 J. Phys. A: Math. Theor. 46 425201], we demonstrate how to obtain linear parametric YB maps from nonlinear Darboux transformations of some Lax operators using linear approximations of matrix refactorisation problems corresponding to Darboux matrices. New linear parametric YB maps with nonlinear dependence on parameters are presented.