论文标题
Qubit分配的QUBO公式
A QUBO Formulation for Qubit Allocation
论文作者
论文摘要
要在量子计算机上运行算法,必须选择一个从电路中的逻辑Qubits到量子硬件上的物理Qubit的分配。在当今的量子计算机上,初始量子安置或量子分配的任务尤其重要,这些量子计算机的数量有限,连通性约束和不同的门贴限制。在这项工作中,我们将量子位放置问题作为二次,不受约束的二进制优化(QUBO)问题制定并实施,并使用模拟退火来解决它以获得初始位置的频谱。与t | ket $ \ rangle $和Qiskit中可用的现代分配方法相比,QUBO方法的分配具有改进的电路深度,$ 50%的$ 50%的$ 50%的基准电路,其中许多人也需要更少的CX门。
To run an algorithm on a quantum computer, one must choose an assignment from logical qubits in a circuit to physical qubits on quantum hardware. This task of initial qubit placement, or qubit allocation, is especially important on present-day quantum computers which have a limited number of qubits, connectivity constraints, and varying gate fidelities. In this work we formulate and implement the qubit placement problem as a quadratic, unconstrained binary optimization (QUBO) problem and solve it using simulated annealing to obtain a spectrum of initial placements. Compared to contemporary allocation methods available in t|ket$\rangle $ and Qiskit, the QUBO method yields allocations with improved circuit depth for $>$50% of a large set of benchmark circuits, with many also requiring fewer CX gates.