论文标题
PIDNET:动态行人入侵检测的有效网络
PIDNet: An Efficient Network for Dynamic Pedestrian Intrusion Detection
论文作者
论文摘要
基于视觉的动态行人入侵检测(PID),判断行人是否通过移动摄像机侵犯了利益区域(AOI),这是移动监视的重要任务。视频帧中动态变化的AOI和许多行人增加了确定行人是否侵入AOI的难度和计算复杂性,这使得以前的算法无法执行此任务。在本文中,我们提出了一个新颖有效的多任务深神经网络Pidnet,以解决这个问题。 PIDNET主要是通过考虑两个因素而设计的:从移动摄像机捕获的视频框架中,准确地分割了动态更改的AOI,并快速检测到生成的AOI被生成的AOI区域的行人。提出了三种有效的网络设计并将其纳入PIDNET,以降低计算复杂性:1)用于特征共享的特殊PID任务主链,2)用于特征种植的功能裁剪模块,3)用于功能压缩的较轻检测分支网络。此外,考虑到该字段中没有公共数据集和基准,我们建立了一个基准数据集来评估提出的网络并首次提供相应的评估指标。实验结果表明,PIDNET可以在拟议的数据集上实现67.1%的PID准确性和9.6 FPS的推理速度,这是基于未来基于视觉的动态PID研究的良好基准。
Vision-based dynamic pedestrian intrusion detection (PID), judging whether pedestrians intrude an area-of-interest (AoI) by a moving camera, is an important task in mobile surveillance. The dynamically changing AoIs and a number of pedestrians in video frames increase the difficulty and computational complexity of determining whether pedestrians intrude the AoI, which makes previous algorithms incapable of this task. In this paper, we propose a novel and efficient multi-task deep neural network, PIDNet, to solve this problem. PIDNet is mainly designed by considering two factors: accurately segmenting the dynamically changing AoIs from a video frame captured by the moving camera and quickly detecting pedestrians from the generated AoI-contained areas. Three efficient network designs are proposed and incorporated into PIDNet to reduce the computational complexity: 1) a special PID task backbone for feature sharing, 2) a feature cropping module for feature cropping, and 3) a lighter detection branch network for feature compression. In addition, considering there are no public datasets and benchmarks in this field, we establish a benchmark dataset to evaluate the proposed network and give the corresponding evaluation metrics for the first time. Experimental results show that PIDNet can achieve 67.1% PID accuracy and 9.6 fps inference speed on the proposed dataset, which serves as a good baseline for the future vision-based dynamic PID study.