论文标题

流动网络上的概率约束优化

Probabilistic Constrained Optimization on Flow Networks

论文作者

Schuster, Michael, Strauch, Elisa, Gugat, Martin, Lang, Jens

论文摘要

不确定性通常在动态流问题中起重要作用。在本文中,我们同时考虑了一个固定和动态流模型,该模型在网络上具有不确定的边界数据。我们介绍了两种方式来计算随机边界数据可行的概率,讨论其优势和缺点的概率。在这种情况下,可行的意味着与随机边界数据相对应的流量符合网络连接处的一些框约束。第一种方法是球形径向分解,第二种方法是核密度估计。在这两种情况下,我们都考虑了某些优化问题,并使用内核密度估计器计算概率约束的衍生物。此外,我们为固定案例和动态情况得出了必要的最佳条件。在整个论文中,我们使用数值示例来说明结果,通过将它们与经典的蒙特卡洛方法进行比较来计算所需的概率。

Uncertainty often plays an important role in dynamic flow problems. In this paper, we consider both, a stationary and a dynamic flow model with uncertain boundary data on networks. We introduce two different ways how to compute the probability for random boundary data to be feasible, discussing their advantages and disadvantages. In this context, feasible means, that the flow corresponding to the random boundary data meets some box constraints at the network junctions. The first method is the spheric radial decomposition and the second method is a kernel density estimation. In both settings, we consider certain optimization problems and we compute derivatives of the probabilistic constraint using the kernel density estimator. Moreover, we derive necessary optimality conditions for the stationary and the dynamic case. Throughout the paper, we use numerical examples to illustrate our results by comparing them with a classical Monte Carlo approach to compute the desired probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源