论文标题
Kenfack Zyczkowski非经典性指标,用于Qutrit的Wigner函数的两个非等效表示
Kenfack Zyczkowski indicator of nonclassicality for two non-equivalent representations of Wigner function of qutrit
论文作者
论文摘要
有限维系统的Wigner函数可以通过与Stratonovich-Weyl内核的密度矩阵进行双重配对来构建。在KenFack和$ \ dot {\ text {z}} $ yczkowski之后,我们考虑了有限维量子系统的非经典性的指标,该指标取决于Wigner函数的负部分的体积。该指标是在统一的量子状态的单位非等效类别上定义的,即代表不变性,但是由于对于给定的量子系统,因此没有唯一的wigner函数,因此对wigner函数的表示形式敏感。基于Wigner函数的模量空间的明确参数化,我们计算相应的Kenfack-$ \ dot {\ text {z}} $ yczkowski指示器的3级系统,用于退化,单位统一的非等价stratonovich-weyl-weyl kernels。
The Wigner function of a finite-dimensional system can be constructed via dual pairing of a density matrix with the Stratonovich-Weyl kernel. Following Kenfack and $\dot{\text{Z}}$yczkowski, we consider the indicator of nonclassicality of a finite-dimensional quantum system which depends on the volume of the negative part of the Wigner function. This indicator is defined over the unitary non-equivalent classes of quantum states, i.e. represents an invariant, but since for a given quantum system there is no unique Wigner function it turns to be sensitive to the choice of representations for the Wigner function. Based on the explicit parameterization of the moduli space of the Wigner functions, we compute the corresponding Kenfack-$\dot{\text{Z}}$yczkowski indicators of a 3-level system for degenerate, unitary non-equivalent Stratonovich-Weyl kernels.