论文标题

数据异常检测用于使用碎屑变换对桥梁进行结构性健康监测

Data Anomaly Detection for Structural Health Monitoring of Bridges using Shapelet Transform

论文作者

Arul, Monica, Kareem, Ahsan

论文摘要

随着传感器技术的更广泛可用性,部署了许多结构性健康监测(SHM)系统来监视民用基础设施。连续监视提供了有关结构的有价值的信息,这些信息可以帮助提供改造和其他结构修改的决策支持系统。但是,当传感器暴露于恶劣的环境条件时,SHM系统测量的数据往往会受到由错误或损坏的传感器引起的多个异常的影响。鉴于随着时间的流逝,一系列不断收集的高维数据,对使用机器学习方法检测异常的研究是SHM社区引起的极大兴趣的话题。本文通过提出使用名为Shapelet Transform的相对较新的时间序列表示形式与随机森林分类器的使用来自主识别SHM数据中的异常情况,从而为这一努力做出了贡献。 Shapelet变换是独特的时间序列表示,仅基于时间序列数据的形状。考虑到每个异常特征的个体特征,此转换的应用会产生一种新的基于形状的特征表示,可以与任何标准的机器学习算法结合使用,以检测异常数据而无需手动干预。在本研究中,异常检测框架包括三个步骤:从异常数据中识别独特的形状,使用这些形状将SHM数据转换为本地形状空间和训练机器学习算法的转换数据以识别异常。通过在中国一座长跨桥上安装的SHM系统中的加速度数据中识别异常数据,证明了这种方法的功效。结果表明,使用建议的方法可以高精度自动检测到SHM数据中的多个数据异常。

With the wider availability of sensor technology, a number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure. The continuous monitoring provides valuable information about the structure that can help in providing a decision support system for retrofits and other structural modifications. However, when the sensors are exposed to harsh environmental conditions, the data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors. Given a deluge of high-dimensional data collected continuously over time, research into using machine learning methods to detect anomalies are a topic of great interest to the SHM community. This paper contributes to this effort by proposing the use of a relatively new time series representation named Shapelet Transform in combination with a Random Forest classifier to autonomously identify anomalies in SHM data. The shapelet transform is a unique time series representation that is solely based on the shape of the time series data. In consideration of the individual characteristics unique to every anomaly, the application of this transform yields a new shape-based feature representation that can be combined with any standard machine learning algorithm to detect anomalous data with no manual intervention. For the present study, the anomaly detection framework consists of three steps: identifying unique shapes from anomalous data, using these shapes to transform the SHM data into a local-shape space and training machine learning algorithm on this transformed data to identify anomalies. The efficacy of this method is demonstrated by the identification of anomalies in acceleration data from a SHM system installed on a long-span bridge in China. The results show that multiple data anomalies in SHM data can be automatically detected with high accuracy using the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源