论文标题

狭窄周期的极端数量

The extremal number of tight cycles

论文作者

Sudakov, Benny, Tomon, István

论文摘要

$ r $ rubiform HyperGraph $ \ Mathcal {H} $的紧密周期是$ \ ell \ geq r+1 $ vertices $ x_1,\ dots,x _ {\ ell} $的序列$ \ {x_ {i},x_ {i+1},\ dots,x_ {i+r-1} \} $(带有订阅modulo $ \ ell $)是$ \ mathcal {h} $的边缘。 V.Sós的一个旧问题也由J.Verstraëte独立提出,要求在没有紧张周期的$ n $顶点上的$ r $均均匀超图中的最大边缘数量。尽管这是一个非常基本的问题,但直到最近,对于$ r \ geq 3 $,尚无良好的上限。在这里,我们证明答案最多是$ n^{r-1+o(1)} $,它紧密到$ o(1)$错误项。 我们的证明是基于在$ \ Mathcal {H} $的线图中找到强大的扩展程序以及一定的密度增量类型参数。

A tight cycle in an $r$-uniform hypergraph $\mathcal{H}$ is a sequence of $\ell\geq r+1$ vertices $x_1,\dots,x_{\ell}$ such that all $r$-tuples $\{x_{i},x_{i+1},\dots,x_{i+r-1}\}$ (with subscripts modulo $\ell$) are edges of $\mathcal{H}$. An old problem of V. Sós, also posed independently by J. Verstraëte, asks for the maximum number of edges in an $r$-uniform hypergraph on $n$ vertices which has no tight cycle. Although this is a very basic question, until recently, no good upper bounds were known for this problem for $r\geq 3$. Here we prove that the answer is at most $n^{r-1+o(1)}$, which is tight up to the $o(1)$ error term. Our proof is based on finding robust expanders in the line graph of $\mathcal{H}$ together with certain density increment type arguments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源