论文标题

精制的高度配对

Refined height pairing

论文作者

Kahn, Bruno, Liu, with an appendix by Qing

论文摘要

对于$ d $维平滑的光滑投射品种$ x $,优于平稳品种$ b $上的$ k $,而对于$ i \ ge 0 $,我们定义了$ ch^i(x)$的子组$ ch^i(x)^{(0)} $ ch^{d+1-i}(x)^{(0)} \ to ch^1(b)\]在Abelian组的类别中,模拟降低。对于$ i = 1,d $,$ ch^i(x)^{(0)} $是数值等同于$ 0 $的循环的组。这种配对与P. Schneider和A. Beilinson定义的配对有关,如果$ b $是一条曲线,当$ x $是Abelian的品种时,L. Moret-Bailly定义了高度,并且与$ h^2中的值配对(b _ {\ bar k},\ bar k},\ nathbf {q} _ {q} _l(1) 一般的。当$ i = 1 $时,我们会详细研究它。

For a $d$-dimensional smooth projective variety $X$ over the function field of a smooth variety $B$ over a field $k$ and for $i\ge 0$, we define a subgroup $CH^i(X)^{(0)}$ of $CH^i(X)$ and construct a "refined height pairing" \[CH^i(X)^{(0)}\times CH^{d+1-i}(X)^{(0)}\to CH^1(B)\] in the category of abelian groups modulo isogeny. For $i=1,d$, $CH^i(X)^{(0)}$ is the group of cycles numerically equivalent to $0$. This pairing relates to pairings defined by P. Schneider and A. Beilinson if $B$ is a curve, to a refined height defined by L. Moret-Bailly when $X$ is an abelian variety, and to a pairing with values in $H^2(B_{\bar k},\mathbf{Q}_l(1))$ defined by D. Rössler and T. Szamuely in general. We study it in detail when $i=1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源