论文标题
通过逐渐增加人造量规电位,可靠和超快的状态制备
Robust and Ultrafast State Preparation by Ramping Artificial Gauge Potentials
论文作者
论文摘要
超电原子系统中静态人造磁场的实现已成为一种强大的工具,例如用于用电荷中性原子模拟量子助大物理。我们以相互作用的玻璃剂通量梯子为最小模型,我们研究了通过磁通坡道进行绝热状态制备的方案。考虑到可以在光学晶格中而不是磁场进行实验设计的人造矢量电位(以PEIERLS相的形式),我们发现绝热状态制备所需的时间很大程度上取决于使用PEIERLS阶段的模式。可以通过指出各个时期的PEIERLS相的不同模式可以直观地理解,这些阶段都会引起相同的磁场坡道,通常会导致坡道期间不同的人造电场。值得注意的是,我们发现最佳选择允许几乎可以立即准备基础状态。我们将这一观察结果与通过抵绝热驾驶的捷径联系起来。我们的发现为原子量子模拟器中的稳健状态准备开辟了新的可能性。
The implementation of static artificial magnetic fields in ultracold atomic systems has become a powerful tool, e.g. for simulating quantum-Hall physics with charge-neutral atoms. Taking an interacting bosonic flux ladder as a minimal model, we investigate protocols for adiabatic state preparation via magnetic flux ramps. Considering the fact that it is actually the artificial vector potential (in the form of Peierls phases) that can be experimentally engineered in optical lattices, rather than the magnetic field, we find that the time required for adiabatic state preparation dramatically depends on which pattern of Peierls phases is used. This can be understood intuitively by noting that different patterns of time-dependent Peierls phases that all give rise to the same magnetic field ramp, generally lead to different artificial electric fields during the ramp. Remarkably, we find that an optimal choice allows for preparing the ground state almost instantaneously. We relate this observation to shortcuts to adiabaticity via counterdiabatic driving. Our findings open new possibilities for robust state preparation in atomic quantum simulators.