论文标题
具有监督机器学习的近地空间中血浆区域的自动分类:应用于磁层多尺度2016-2019观察值
Automatic classification of plasma regions in near-Earth space with supervised machine learning: application to Magnetospheric Multi Scale 2016-2019 observations
论文作者
论文摘要
对近地空间中血浆区域的适当分类对于对基本等离子体过程(例如冲击,磁重新连接,波浪和湍流,喷气机及其组合)进行明确的统计研究至关重要。大多数可用的研究是通过使用人体驱动方法(例如视觉数据选择或将预定义阈值应用于不同可观察的血浆量的应用)进行的。尽管人驱动的方法允许进行许多统计研究,但这些方法通常是耗时的,并且可以引入重要的偏见。另一方面,最近的大型高质量航天器数据库的可用性,以及机器学习算法的重大进展,现在可以允许机器学习的有意义的应用程序来实现位于原位的等离子数据。在这项研究中,我们将完全卷积神经网络(FCN)深度机倾斜算法应用于最近的磁层多尺度(MMS)任务数据,以便在2016 - 2019年期间对近乎近地的空间中的十个关键等离子体区域进行分类。为此,我们对每个此类等离子体区域的时间序列使用可用的时间序列,这些时间序列是通过使用以人为驱动的选择性下行链路应用于MMS爆发数据来标记的。我们讨论了几个定量参数,以评估两种方法的准确性。我们的结果表明,FCN方法可靠地准确地对标记的时间序列数据进行分类,因为它考虑了每个区域中等离子体数据的动态特征。当应用于未标记的MMS数据时,我们还提供了FCN方法的良好精度。最后,我们展示了如何将MMS数据上使用的该方法扩展到群集任务中的数据,表明该方法可以成功地应用于任何原位航天器等离子数据库。
The proper classification of plasma regions in near-Earth space is crucial to perform unambiguous statistical studies of fundamental plasma processes such as shocks, magnetic reconnection, waves and turbulence, jets and their combinations. The majority of available studies have been performed by using human-driven methods, such as visual data selection or the application of predefined thresholds to different observable plasma quantities. While human-driven methods have allowed performing many statistical studies, these methods are often time-consuming and can introduce important biases. On the other hand, the recent availability of large, high-quality spacecraft databases, together with major advances in machine-learning algorithms, can now allow meaningful applications of machine learning to in-situ plasma data. In this study, we apply the fully convolutional neural network (FCN) deep machine-leaning algorithm to the recent Magnetospheric Multi Scale (MMS) mission data in order to classify ten key plasma regions in near-Earth space for the period 2016-2019. For this purpose, we use available intervals of time series for each such plasma region, which were labeled by using human-driven selective downlink applied to MMS burst data. We discuss several quantitative parameters to assess the accuracy of both methods. Our results indicate that the FCN method is reliable to accurately classify labeled time series data since it takes into account the dynamical features of the plasma data in each region. We also present good accuracy of the FCN method when applied to unlabeled MMS data. Finally, we show how this method used on MMS data can be extended to data from the Cluster mission, indicating that such method can be successfully applied to any in situ spacecraft plasma database.