论文标题
贝塞尔梁:统一和扩展的视角
Bessel Beams: Unified and Extended Perspective
论文作者
论文摘要
我们提出了贝塞尔束的统一和扩展的视角,无论其轨道角动量(OAM)如何 - 零,整数或非企业 - 以及模式 - 标量或矢量,以及LSE/LSM或TE/TM,在后一种情况下。该统一基于沿梁的角光谱锥的组成波的整体叠加,并允许以通用方式描述,计算,关联和实现所有贝塞尔束,甚至其他类型的梁。本文首先建立了整体叠加理论。然后,它证明了非Integer-OAM TE/TM Bessel束的先前未报告的存在,比较了LSE/LSM和TE/TM模式,并在它们之间建立了有用的数学关系。它还提供了根据组成波的初始阶段而言,对非Integer-Oam奇点的位置进行了原始描述。最后,它引入了一种通用技术,可以通过适当调整的来源的足够叠加来生成贝塞尔束。这种全球视角和理论扩展可能会在光谱,显微镜和光学/量子力操作等应用中开辟新的途径。
We present a unified and extended perspective of Bessel beams, irrespective to their orbital angular momentum (OAM) -- zero, integer or noninteger -- and mode -- scalar or vectorial, and LSE/LSM or TE/TM in the latter case. The unification is based on the integral superposition of constituent waves along the angular-spectrum cone of the beam, and allows to describe, compute, relate, and implement all the Bessel beams, and even other types of beams, in a universal fashion. The paper first establishes the integral superposition theory. Then, it demonstrates the previously unreported existence of noninteger-OAM TE/TM Bessel beams, compares the LSE/LSM and TE/TM modes, and establishes useful mathematical relations between them. It also provides an original description of the position of the noninteger-OAM singularity in terms of the initial phase of the constituent waves. Finally, it introduces a general technique to generate Bessel beams by an adequate superposition of properly tuned sources. This global perspective and theoretical extension may open up new avenues in applications such as spectroscopy, microscopy, and optical/quantum force manipulations.