论文标题
诱导面部识别的预测不确定性估计
Inducing Predictive Uncertainty Estimation for Face Recognition
论文作者
论文摘要
知道何时可以信任输出对于可靠使用面部识别系统至关重要。尽管最近在改善面部验证绩效的研究中付出了巨大的努力,但了解模型的预测何时应该或不应信任的何时受到关注。我们的目标是为面部图像分配信心分数,以反映其可识别信息的质量。为此,我们提出了一种从面部图像的“配对对”中自动生成图像质量训练数据的方法,并使用生成的数据来训练称为PCNET的轻量级预测置信网,以估计面部图像的置信度得分。我们系统地评估了PCNET与其误差与拒绝性能的有用性,并证明它可以普遍配对并提高任何验证模型的鲁棒性。我们在公共IJB-C面部验证基准上描述了三种用例:(i)通过拒绝低质量的面部图像来提高基于图像的验证错误率; (ii)改善基于1:1的基于质量得分的融合性能; (iii)将其用作从收藏中选择高质量(未造成的,良好的照明,更额叶)面孔的质量措施,例如用于自动注册或显示。
Knowing when an output can be trusted is critical for reliably using face recognition systems. While there has been enormous effort in recent research on improving face verification performance, understanding when a model's predictions should or should not be trusted has received far less attention. Our goal is to assign a confidence score for a face image that reflects its quality in terms of recognizable information. To this end, we propose a method for generating image quality training data automatically from 'mated-pairs' of face images, and use the generated data to train a lightweight Predictive Confidence Network, termed as PCNet, for estimating the confidence score of a face image. We systematically evaluate the usefulness of PCNet with its error versus reject performance, and demonstrate that it can be universally paired with and improve the robustness of any verification model. We describe three use cases on the public IJB-C face verification benchmark: (i) to improve 1:1 image-based verification error rates by rejecting low-quality face images; (ii) to improve quality score based fusion performance on the 1:1 set-based verification benchmark; and (iii) its use as a quality measure for selecting high quality (unblurred, good lighting, more frontal) faces from a collection, e.g. for automatic enrolment or display.