论文标题
三维仿射几何形状中的表面不变性
Invariants of Surfaces in Three-Dimensional Affine Geometry
论文作者
论文摘要
使用移动框架的方法,我们分析了三维仿射几何形状中差分不变的代数。对于椭圆形,双曲线和抛物线点,我们表明,如果差异不变的代数是非平凡的,那么它通常由单个不变性生成。
Using the method of moving frames we analyze the algebra of differential invariants for surfaces in three-dimensional affine geometry. For elliptic, hyperbolic, and parabolic points, we show that if the algebra of differential invariants is non-trivial, then it is generically generated by a single invariant.