论文标题
gadolinium原子束的连续减慢
Continuous slowing of a gadolinium atomic beam
论文作者
论文摘要
本文介绍了一种新的创新实验方法的开发,以完全表征了使用石英晶体$μ$ $ $ balance(QCM)作为动能传感器的螺线管“ Spin-Flip” Zeeman(Zs)。在本实验中,我们将447.1 nm激光聚焦于gadolinium(GD)原子的反传播光束,以驱动地面$^{9} $ d $^{0} _ {2} _ {2} $ state $ state $ state $^{2} $ state and $^{9} $ d $ d $ _ d $ _ {3} 3} $ contect的偶极转变。在此过程中,使用QCM测量了光束速度的变化,这是一种新颖的和替代方法,以表征1 m长的自旋flip翼鼠的效率缓慢。通常用于固态物理的QCM经过持续和仔细的监测,以确定其固有振荡频率的变化。这些变化揭示了与沉积速率变化以及QCM和GD原子之间交换的动量的直接关系。因此,就超速原子物理学而言,它可用于研究冷却过程中原子速度分布的时间进化。通过这种方法,我们获得了最大原子的平均速度降低(43.5 $ \ pm $ 6.4)$ \%$由我们的设备产生。此外,我们估计使用的电子过渡的实验寿命为$τ_{e} $ = 8.2 ns,然后我们将其与报告的寿命为443.06 nm和451.96 nm的GD的寿命。这些结果证实了QCM提供了一种可访问且简单的解决方案,以考虑激光冷却实验。因此,一种新颖而创新的技术可以用于将来的实验。
The article presents the development of a new and innovative experimental method to fully characterize a solenoidal "spin-flip" Zeeman slower (ZS) using a Quartz Crystal $μ$-balance (QCM) as a kinetic energy sensor. In this experiment, we focus a 447.1 nm laser into a counter-propagating beam of gadolinium (Gd) atoms in order to drive the dipole transition between ground $^{9}$D$^{0}_{2}$ state and $^{9}$D$_{3}$ excited state. The changes in the velocity of the beam were measured using a QCM during this process, as a novel and alternative method to characterize the efficiency of a 1 m-long spin-flip Zeeman slower. The QCM, normally used in solid-state physics, is continuously and carefully monitored to determine the change in its natural frequency of oscillation. These changes reveal a direct relation with changes in the deposition rate and the momentum exchanged between the QCM and Gd atoms. Hence, in terms of ultracold atom physics, it might be used to study the time-evolution of the velocity distribution of the atoms during the cooling process. By this method, we obtain a maximum atom average velocity reduction of (43.5 $\pm$ 6.4)$\%$ produced by our apparatus. Moreover, we estimate an experimental lifetime of $τ_{e}$ = 8.2 ns for the used electronic transition, and then we compared it with the reported lifetime for 443.06 nm and 451.96 nm electronic transitions of Gd. These results confirm that the QCM offers an accessible and simple solution to take into account for laser cooling experiments. Therefore, a novel and innovative technique can be available for future experiments.