论文标题
通过激烈激光驱动的微管内爆的巨型磁场产生
Generation of megatesla magnetic fields by intense-laser-driven microtube implosions
论文作者
论文摘要
由超明态激光脉冲驱动的微管内爆可用于产生超高磁场。由于激光生产的热电子具有巨型电子伏特的能量,因此内壁表面的冷离子向中央轴伸展。通过在基洛特拉秩序上的均匀磁场前种子均匀的磁场,洛伦兹的力诱导了爆内离子和电子的larmor gymotion。由于中央轴周围相对论电荷颗粒的产生集体运动,因此产生了〜PETA-AMPERE/CM2的强旋流密度,并具有几十nm大小的,产生了Megatesla-rorder磁场。粒子模拟和简单的分析模型揭示了基本的物理和重要缩放。该概念有望在超高磁场方面在基本物理和应用的许多分支中开放新的边界。
A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons. Due to the resultant collective motion of relativistic charged particles around the central axis, strong spin current densities of ~ peta-ampere/cm2 are produced with a few tens of nm size, generating megatesla-order magnetic fields. The underlying physics and important scaling are revealed by particle simulations and a simple analytical model. The concept holds promise to open new frontiers in many branches of fundamental physics and applications in terms of ultrahigh magnetic fields.