论文标题

使用多尺度特征提取的高效,高性能胰腺分割

Efficient, high-performance pancreatic segmentation using multi-scale feature extraction

论文作者

Knolle, Moritz, Kaissis, Georgios, Jungmann, Friederike, Ziegelmayer, Sebastian, Sasse, Daniel, Makowski, Marcus, Rueckert, Daniel, Braren, Rickmer

论文摘要

为了基于人工智能的图像分析方法达到临床适用性,高性能算法的发展至关重要。例如,基于自然图像的存在分割算法既不有效地使用参数使用,也不是用于医学成像的优化。在这里,我们提出了Monet,这是一种高度优化的基于神经网络的胰腺分割算法,旨在通过有效的多尺度图像特征利用率来实现高性能。

For artificial intelligence-based image analysis methods to reach clinical applicability, the development of high-performance algorithms is crucial. For example, existent segmentation algorithms based on natural images are neither efficient in their parameter use nor optimized for medical imaging. Here we present MoNet, a highly optimized neural-network-based pancreatic segmentation algorithm focused on achieving high performance by efficient multi-scale image feature utilization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源