论文标题

在$ s $ -matrix上,schrödinger运营商与非本地$δ$ - 互动

On the $S$-matrix of Schrödinger operator with nonlocal $δ$-interaction

论文作者

Główczyk, Anna, Kużel, Sergiusz

论文摘要

使用Lax-Phillips散射理论方法研究了具有非本地$δ$ - 互动的Schrödinger操作员。建立了LAX-Phillips方法的适用条件,以非循环功能为角度。获得了$ S $ -MATRIX的两个公式。第一个涉及Krein-Naimark分解公式和Weyl-Titchmarsh功能,而第二个函数基于修改后的反射和传输系数。 $ s $ -matrix $ s(z)$在下半平面$ \ mathbb {c _-} $中是分析的。否则,$ s(z)$是$ \ mathbb {c _-} $中的meromorphic矩阵值函数,其属性与相应的schrödinger操作员的属性密切相关。给出了$ s $ - 标准的示例。

Schrödinger operators with nonlocal $δ$-interaction are studied with the use of the Lax-Phillips scattering theory methods. The condition of applicability of the Lax-Phillips approach in terms of non-cyclic functions is established. Two formulas for the $S$-matrix are obtained. The first one deals with the Krein-Naimark resolvent formula and the Weyl-Titchmarsh function, whereas the second one is based on modified reflection and transmission coefficients. The $S$-matrix $S(z)$ is analytical in the lower half-plane $\mathbb{C_-}$ when the Schrödinger operator with nonlocal $δ$-interaction is positive self-adjoint. Otherwise, $S(z)$ is a meromorphic matrix-valued function in $\mathbb{C_-}$ and its properties are closely related to the properties of the corresponding Schrödinger operator. Examples of $S$-matrices are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源