论文标题
IAUNET:全球背景感知人士重新识别的功能学习
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification
论文作者
论文摘要
近年来,基于CNN的网络的人员重新识别(REID)取得了有利的性能。但是,大多数现有基于CNN的方法并未充分利用时空上下文建模。实际上,全球时空环境可以极大地阐明当地分心以增强目标特征表示。为了全面利用空间上的上下文信息,在这项工作中,我们提出了一个新颖的块,相互作用 - 聚集 - 更高(IAU),用于高性能的人REID。首先,引入了时空IAU(Stiau)模块。 Stiau将两种类型的上下文相互作用纳入了目标特征学习的CNN框架中。在这里,空间相互作用学会计算单个帧不同身体部位之间的上下文依赖关系。虽然时间相互作用用于捕获所有框架之间同一身体部位之间的上下文依赖性。此外,IAU通道(CIAU)模块旨在建模通道特征之间的语义上下文相互作用,以增强特征表示形式,尤其是对于小规模的视觉提示和身体部位。因此,IAU块使该功能能够结合全球空间,时间和通道上下文。它是轻巧的,端到端的训练,可以轻松地插入现有的CNN中以形成Iaunet。该实验表明,IAUNET在图像和视频REID任务上都对最新的最新表现表现出色,并在一般对象分类任务上取得了令人信服的结果。源代码可在https://github.com/blue-blue272/imgreid-ianet上找到。
Person re-identification (reID) by CNNs based networks has achieved favorable performance in recent years. However, most of existing CNNs based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-temporal context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, Interaction-Aggregation-Update (IAU), for high-performance person reID. Firstly, Spatial-Temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame. While the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a Channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state-of-the-art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.