论文标题
边界拓扑超导体
Boundary Topological Superconductors
论文作者
论文摘要
对于强烈的各向异性时间反转不变(TRI)绝缘子,在两个维度和三个维度中,频带反转可以分别发生在高对称轴和平面的所有三个三动力矩上。尽管这些类别的材料在拓扑上是微不足道的,因为强的$ z_ {2} $索引都是微不足道的,但它们可以在某些边界上托管偶数偶数的未受保护的无螺旋无间隙边缘状态或表面迪拉克锥。我们在这项工作中表明,当无间隙边界状态被$ s {\ pm} $ - 波超导率覆盖时,可以在相应的边界上实现以$ z_ {2} $不变的特征的边界时间反转拓扑超导体(BTRITSC)。由于BTRITSC的尺寸低于整体,因此整个系统是二阶拓扑超导体。当Btritsc的边界进一步开放时,Majorana Kramers对和无螺旋无间隙的Majorana模式将分别出现在两个和三个维度的拐角和铰链上。此外,磁场可以隔离三维二阶三层拓扑超导体的螺旋主要铰链模式,并导致以Majorana角模式实现三阶拓扑超导体。我们的建议可能在绝缘体 - 抗螺旋体的异质结构和基于铁的超导体中实现,它们的正常状态采用所需的倒带结构。
For strongly anisotropic time-reversal invariant (TRI) insulators in two and three dimensions, the band inversion can occur respectively at all TRI momenta of a high symmetry axis and plane. Although these classes of materials are topologically trivial as the strong and weak $Z_{2}$ indices are all trivial, they can host an even number of unprotected helical gapless edge states or surface Dirac cones on some boundaries. We show in this work that when the gapless boundary states are gapped by $s_{\pm}$-wave superconductivity, a boundary time-reversal invariant topological superconductor (BTRITSC) characterized by a $Z_{2}$ invariant can be realized on the corresponding boundary. Since the dimension of the BTRITSC is lower than the bulk by one, the whole system is a second-order TRI topological superconductor. When the boundary of the BTRITSC is further cut open, Majorana Kramers pairs and helical gapless Majorana modes will respectively appear at the corners and hinges of the considered sample in two and three dimensions. Furthermore, a magnetic field can gap the helical Majorana hinge modes of the three-dimensional second-order TRI topological superconductor and lead to the realization of a third-order topological superconductor with Majorana corner modes. Our proposal can potentially be realized in insulator-superconductor heterostructures and iron-based superconductors whose normal states take the desired inverted band structures.