论文标题
汉密尔顿记忆:可擦除的经典位
Hamiltonian Memory: An Erasable Classical Bit
论文作者
论文摘要
物理系统上实施的计算受到物理定律的限制。界限计算的物理定律的一个突出例子是陆路原则。根据这一原则,删除一些信息需要在相空间中的概率集中,而liouville的定理在纯哈密顿动力学中是不可能的。因此,它需要耗散动力学,每位删除至少$ k_bt \ log 2 $的热量耗散动态。使用具体的示例,我们表明,当动态局限于单个能量壳时,可以使用汉密尔顿动态将概率集中在该外壳上,因此可以实现无热力成本的可擦除位。
Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.