论文标题

汉密尔顿记忆:可擦除的经典位

Hamiltonian Memory: An Erasable Classical Bit

论文作者

Holtzman, Roi, Arwas, Geva, Raz, Oren

论文摘要

物理系统上实施的计算受到物理定律的限制。界限计算的物理定律的一个突出例子是陆路原则。根据这一原则,删除一些信息需要在相空间中的概率集中,而liouville的定理在纯哈密顿动力学中是不可能的。因此,它需要耗散动力学,每位删除至少$ k_bt \ log 2 $的热量耗散动态。使用具体的示例,我们表明,当动态局限于单个能量壳时,可以使用汉密尔顿动态将概率集中在该外壳上,因此可以实现无热力成本的可擦除位。

Computations implemented on a physical system are fundamentally limited by the laws of physics. A prominent example for a physical law that bounds computations is the Landauer principle. According to this principle, erasing a bit of information requires a concentration of probability in phase space, which by Liouville's theorem is impossible in pure Hamiltonian dynamics. It therefore requires dissipative dynamics with heat dissipation of at least $k_BT\log 2$ per erasure of one bit. Using a concrete example, we show that when the dynamic is confined to a single energy shell it is possible to concentrate the probability on this shell using Hamiltonian dynamic, and therefore to implement an erasable bit with no thermodynamic cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源