论文标题
具有动量放松的黑麸皮的全息复杂性
Holographic complexity for black branes with momentum relaxation
论文作者
论文摘要
我们采用“复杂性等于动作”的猜想来研究由Einstein-Maxwell理论组成的全息玩具模型的带电和中性广告的动作增长率,该模型在$ d + 1 $ 1 $ dimensional-dimensional bulk bulk spacetime和$ d-1 $ $ d-1 $ $ scall scalar领域中,这被称为Einstein-Maxwell-Maxwell-axhel-axion(Ema)理论。从全息视角来看,标量场在边界上具有动量松弛的空间依赖性场理论,这对均质和各向同性黑晶体是双重的。我们发现,Wheeler-Dewitt(WDW)贴片内的全息复杂性的增长率使相应的Lloyd的结合在晚期限制中饱和。特别是对于中性广告黑麸皮,将表明,很晚的复杂性生长速率消失了,因为宽松参数的特定值$β_{max} $,而黑洞的温度最小。然后,我们在最低温度下研究了全息偶性理论的传输特性。在四维时空中,在K效率模型的背景下,轴突场动力学项的非线性贡献也被考虑。我们还研究了该模型中的二射广告黑色麸皮的全息复杂性的时间演变。
We employ the "complexity equals action" conjecture to investigate the action growth rate for the charged and neutral AdS black branes of a holographic toy model consisting of Einstein-Maxwell theory in $d + 1$-dimensional bulk spacetime with $d - 1$ massless scalar fields which is called Einstein-Maxwell-Axion (EMA) theory. From the holographic point of view, the scalar fields source a spatially dependent field theory with momentum relaxation on the boundary, which is dual to the homogeneous and isotropic black branes. We find that the growth rate of the holographic complexity within the Wheeler-DeWitt (WDW) patch saturates the corresponding Lloyd's bound at the late time limit. Especially for the neutral AdS black branes, it will be shown that the complexity growth rate at late time vanishes for a particular value of relaxation parameter $β_{max}$ where the temperature of the black hole is minimal. Then, we investigate the transport properties of the holographic dual theory in the minimum temperature. A non-linear contribution of the axion field kinetic term in the context of k-essence model in the four-dimensional spacetime is considered as well. We also study the time evolution of the holographic complexity for the dyonic AdS black branes in this model.