论文标题

过程挖掘符合因果机学习:从事件日志中发现因果规则

Process Mining Meets Causal Machine Learning: Discovering Causal Rules from Event Logs

论文作者

Bozorgi, Zahra Dasht, Teinemaa, Irene, Dumas, Marlon, La Rosa, Marcello, Polyvyanyy, Artem

论文摘要

本文提出了一种分析业务流程事件日志的方法,以生成案例级别的治疗建议,以最大程度地提高给定结果的可能性。用户将事件日志中的属性分类为可控和不可控制的,其中前者对应于在执行过程中可以更改的属性(可能的治疗方法)。我们使用一种行动规则挖掘技术来识别在某些条件下与结果同时发生的治疗方法。由于基于相关性而不是因果关系生成了行动规则,因此我们使用因果机学习技术,特别是抬高树,以发现治疗的案例子组对混杂变量调整后结果对结果具有很高的因果影响。我们使用贷款申请流程的事件日志测试了这种方法的相关性,并将我们的发现与过程采矿专家手动制定的建议进行了比较。

This paper proposes an approach to analyze an event log of a business process in order to generate case-level recommendations of treatments that maximize the probability of a given outcome. Users classify the attributes in the event log into controllable and non-controllable, where the former correspond to attributes that can be altered during an execution of the process (the possible treatments). We use an action rule mining technique to identify treatments that co-occur with the outcome under some conditions. Since action rules are generated based on correlation rather than causation, we then use a causal machine learning technique, specifically uplift trees, to discover subgroups of cases for which a treatment has a high causal effect on the outcome after adjusting for confounding variables. We test the relevance of this approach using an event log of a loan application process and compare our findings with recommendations manually produced by process mining experts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源