论文标题

分析探测技术的稀疏近似和痕量估计腐烂矩阵函数的痕量估计

Analysis of probing techniques for sparse approximation and trace estimation of decaying matrix functions

论文作者

Frommer, Andreas, Schimmel, Claudia, Schweitzer, Marcel

论文摘要

矩阵函数的计算$ f(a)$或相关数量(如其跟踪)是一项重要但具有挑战性的任务,尤其是对于大而稀疏的矩阵$ a $。近年来,在这种情况下,探测方法已成为经常被考虑的工具,因为它们允许通过评估(少数)$ f(a)v $或$ v $或$ v^tf(a)V $的评估来替换$ f(a)$或$ \ text {tr}(f(a))$的计算。然后,可以通过标准技术有效地解决这些任务,例如Krylov子空间方法。众所周知,当$ f(a)$大约稀疏时,探测方法特别有效,例如,当$ f(a)$的条目显示出强大的脱离脱节衰减时,但是到目前为止缺乏严格的错误分析。在本文中,我们开发了有关$ f(a)$的稀疏近似值的新理论结果,以及基于图形颜色探测方法的错误界。作为副产品,通过仔细检查这些错误范围的证据,我们还获得了新的见解,以便何时停止用于近似$ f(a)v $或$ v^tf(a)v $的Krylov迭代,从而允许实际上有效地实施探测方法。

The computation of matrix functions $f(A)$, or related quantities like their trace, is an important but challenging task, in particular for large and sparse matrices $A$. In recent years, probing methods have become an often considered tool in this context, as they allow to replace the computation of $f(A)$ or $\text{tr}(f(A))$ by the evaluation of (a small number of) quantities of the form $f(A)v$ or $v^Tf(A)v$, respectively. These tasks can then efficiently be solved by standard techniques like, e.g., Krylov subspace methods. It is well-known that probing methods are particularly efficient when $f(A)$ is approximately sparse, e.g., when the entries of $f(A)$ show a strong off-diagonal decay, but a rigorous error analysis is lacking so far. In this paper we develop new theoretical results on the existence of sparse approximations for $f(A)$ and error bounds for probing methods based on graph colorings. As a by-product, by carefully inspecting the proofs of these error bounds, we also gain new insights into when to stop the Krylov iteration used for approximating $f(A)v$ or $v^Tf(A)v$, thus allowing for a practically efficient implementation of the probing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源