论文标题
Cagnn:无监督图表示学习的集群感知图神经网络
CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph Representation Learning
论文作者
论文摘要
无监督的图表示学习旨在学习低维节点嵌入而无需监督的,同时保留图形拓扑结构和节点归属特征。以前的图形神经网络(GNN)需要大量标记的节点,在现实世界图数据中可能无法访问。在本文中,我们提出了一种新颖的群集感知的图形神经网络(CAGNN)模型,用于使用自我监督技术的无监督图表示学习。在CAGNN中,我们在节点嵌入式上执行聚类,并通过预测群集分配来更新模型参数。此外,我们观察到图形通常包含类间边缘,这些边缘误导了GNN模型以汇总来自邻域节点的嘈杂信息。我们通过加强基于群集标签的不同类别之间的阶级连接来进一步完善图形拓扑,从而更好地保留嵌入空间中的群集结构。我们使用现实世界数据集对两个基准任务进行了全面的实验。结果表明,所提出的模型的性能优于现有基线方法。值得注意的是,我们的模型在节点聚类中的准确性比最先进的方面提高了7%。
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision while preserving graph topological structures and node attributive features. Previous graph neural networks (GNN) require a large number of labeled nodes, which may not be accessible in real-world graph data. In this paper, we present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques. In CAGNN, we perform clustering on the node embeddings and update the model parameters by predicting the cluster assignments. Moreover, we observe that graphs often contain inter-class edges, which mislead the GNN model to aggregate noisy information from neighborhood nodes. We further refine the graph topology by strengthening intra-class edges and reducing node connections between different classes based on cluster labels, which better preserves cluster structures in the embedding space. We conduct comprehensive experiments on two benchmark tasks using real-world datasets. The results demonstrate the superior performance of the proposed model over existing baseline methods. Notably, our model gains over 7% improvements in terms of accuracy on node clustering over state-of-the-arts.