论文标题

MIPGAN-使用身份先验驱动的GAN产生强大而高质量的变形攻击

MIPGAN -- Generating Strong and High Quality Morphing Attacks Using Identity Prior Driven GAN

论文作者

Zhang, Haoyu, Venkatesh, Sushma, Ramachandra, Raghavendra, Raja, Kiran, Damer, Naser, Busch, Christoph

论文摘要

面部变形攻击目标是通过采用衍生自多个数据主体(例如同伙和恶意演员)的面部图像来规避面部识别系统(FRS)的目标。鉴于它们具有高度的面部相似之处,因此可以验证变形的图像与以合理的成功率一起贡献数据主体。变形攻击的成功直接取决于生成的变形图像的质量。我们提出了一种新的方法来产生强烈的攻击,以扩展我们较早的生成面部变形的框架。我们使用先验驱动的生成对抗网络提出了一种新方法,我们称之为Mipgan(通过身份先验驱动的GAN变形)。所提出的米甘(Mipgan)源自该风格,具有新配制的损失功能,利用知觉质量和身份因子,以最小的人工制品和高分辨率生成高质量的形态图像。我们通过评估其针对商业和深度学习的面部识别系统(FRS)的脆弱性来证明拟议方法的适用性,以产生强大的变形攻击,并证明攻击的成功率。进行了广泛的实验,以评估FRS的脆弱性,以针对三种类型的数据,例如数字图像,重新数字(印刷和扫描)图像,并在新生成的Mipgan Mipgan Face Morph Dataset重新数字后进行压缩图像。获得的结果表明,所提出的变体生成方法对FRS构成了高威胁。

Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects with a reasonable success rate, given they have a high degree of facial resemblance. The success of morphing attacks is directly dependent on the quality of the generated morph images. We present a new approach for generating strong attacks extending our earlier framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network, which we refer to as MIPGAN (Morphing through Identity Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed facial image with minimal artefacts and with high resolution. We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate of attacks. Extensive experiments are carried out to assess the FRS's vulnerability against the proposed morphed face generation technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after re-digitization from newly generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the proposed approach of morph generation poses a high threat to FRS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源