论文标题

舰队:红移无形的机器学习管道,以迅速识别富裕的超浮肿超新星

FLEET: A Redshift-Agnostic Machine Learning Pipeline to Rapidly Identify Hydrogen-Poor Superluminous Supernovae

论文作者

Gomez, Sebastian, Berger, Edo, Blanchard, Peter K., Hosseinzadeh, Griffin, Nicholl, Matt, Villar, V. Ashley, Yin, Yao

论文摘要

在过去的十年中,宽场光学时间域调查提高了瞬变的发现率,以至于将$ \ lyssim 10 \%$通过光谱进行分类。尽管如此,这些调查还是能够发现新的和罕见的瞬变类型,最著名的是,富有氢化的超小型超新星(SLSN-I)类别,迄今为止已确认约150个事件。在这里,我们提出了一种机器学习分类算法,该算法是针对SLSN-I纯样品的快速鉴定,以实现光谱和多波长随访。该算法是车队的一部分(发现发光和外来的乳腺外瞬变)观察策略。它同时利用光曲线和上下文信息,但不需要红移,可以为每个新发现的瞬态分配成为SLSN-I的概率。当观察选择SLSN-I候选物时,该分类器可以达到约85 \%(具有20 \%完整性)的最大纯度。此外,我们提出了两个使用红移或完整的光曲线的替代分类器,并且可以达到更高的纯度和完整性。以当前的发现率,车队算法每年可提供约20美元的SLSN-I候选人,用于光谱后续行动,纯度为85 \%;通过对时空的传统调查,我们预计这将增加到$ \ sim 10^3 $每年的事件。

Over the past decade wide-field optical time-domain surveys have increased the discovery rate of transients to the point that $\lesssim 10\%$ are being spectroscopically classified. Despite this, these surveys have enabled the discovery of new and rare types of transients, most notably the class of hydrogen-poor superluminous supernovae (SLSN-I), with about 150 events confirmed to date. Here we present a machine-learning classification algorithm targeted at rapid identification of a pure sample of SLSN-I to enable spectroscopic and multi-wavelength follow-up. This algorithm is part of the FLEET (Finding Luminous and Exotic Extragalactic Transients) observational strategy. It utilizes both light curve and contextual information, but without the need for a redshift, to assign each newly-discovered transient a probability of being a SLSN-I. This classifier can achieve a maximum purity of about 85\% (with 20\% completeness) when observing a selection of SLSN-I candidates. Additionally, we present two alternative classifiers that use either redshifts or complete light curves and can achieve an even higher purity and completeness. At the current discovery rate, the FLEET algorithm can provide about $20$ SLSN-I candidates per year for spectroscopic follow-up with 85\% purity; with the Legacy Survey of Space and Time we anticipate this will rise to more than $\sim 10^3$ events per year.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源